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Molecular dynamics data are reported for two-body and three-body interactions in noble gases at
densities covering the gas, liquid, and solid phases. The data indicate that simple relationships exist
between three- and two-body interactions in both fluid and solid phases. The relationship for liquids
has a simple density dependence with only one external parameter. In contrast, the solid phase
relationship depends both on density and on the square of density and requires the evaluation of two
parameters. The relationships are tested for both system-size and temperature dependences. The
values of the relationship parameters are only sensitive to system size when a small number of
atoms are involved. For 500 or more atoms, they remain nearly constant. The relationships are valid
for both subcritical and slightly supercritical temperatures. A practical benefit of the relationships is
that they enable the use of two-body intermolecular potentials for the prediction of the properties of
real systems without the computational expense of three-body calculations. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2353117�

I. INTRODUCTION

In principle, the molecular simulation1 of materials could
involve the calculation of all interatomic interactions involv-
ing two-, three-, and other higher-body terms, which repre-
sent an infinite number of calculations. Fortunately, the
diminishing magnitude1–3 of successive many-body contribu-
tions and their alternate signs means that the combination of
two- and three-body interactions is a very good approxima-
tion for either the total force or total energy. However, the
addition of three-body interaction remains computationally
prohibitive3 even for simulations involving only a few hun-
dred atoms. To overcome this difficulty, effective multibody
potentials such as the Lennard-Jones potential are used that
only involve calculating interactions between pairs of atoms.
Nonetheless, for atomic systems, such as the noble gases, it
is possible to determine accurate two-body potentials. Origi-
nally, the development2 of two-body potentials4,5 required
very accurate experimental data such as molecular beam col-
lision data and second virial coefficient measurements,
which could be unambiguously attributed to two-body inter-
actions alone. More recently, developments in theory mean
that accurate two-body potentials can be obtained from ab
initio calculations.6–8

Despite their theoretical merit, two-body potentials4–8

cannot be used to accurately predict the physical properties
of real fluids because the contribution of other-body interac-
tions, most notably three-body interactions, is missing. It is
currently impossible8 to accurately determine three-body in-
teractions from ab initio calculations. This means that the
application of either ab initio6–8 or empirical4,5 two-body po-
tentials to the properties of real materials requires the addi-

tional calculation of three-body interactions. Calculations in-
volving empirical two-body potentials3,9 or ab initio
potentials6–8 with the Axilrod-Teller10 three-body term have
yielded accurate predictions of the vapor-liquid phase coex-
istence of pure fluids. Of course, including three-body inter-
actions comes with a great computational cost, which renders
such an approach impractical for routine situations. To rem-
edy this problem, Marcelli and Sadus11 found that the con-
tribution of three-body interactions to the energy of the fluid
�E3� could be obtained from the two-body energy �E2�
via the following simple relationship involving density
��=N /V, where N is the number of atoms and V is the vol-
ume� and parameters for the depth of the two-body intermo-
lecular potential ���, the two-body impenetrable collision di-
ameter ���, and a nonadditive coefficient ���:

E3 = −
�a��E2

��6 . �1�

In Eq. �1�, �a is a constant based on the optimal fit of the
equation to the two- and three-body simulation data. Marcelli
and Sadus reported11 that very good agreement was obtained
when �a=2/3. The significance of Eq. �1� is that it allows us
to use two-body potentials to accurately predict the proper-
ties of real fluids without incurring the computational cost of
three-body calculations. Existing Monte Carlo or molecular
dynamics codes can be easily modified with the intermolecu-
lar potential �u� given by12

u = u2�1 −
�a��

��6 � , �2�

where u2 is the two-body intermolecular potential. The only
other change is that the calculation of pressure �p� must ac-
count for the density dependence in the intermolecular
potential.13
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Equation �1� was originally obtained from the results of
Monte Carlo Gibbs ensemble14 calculations. Therefore, the
available simulation data were limited to a narrow range of
vapor and liquid densities with considerable statistical uncer-
tainties in both the densities and the energies. The aims of
this work are �a� to test Eq. �1� with accurate molecular
dynamics data, �b� extend its scope to cover the entire fluid
range, and �c� determine an equivalent relationship for sol-
ids.

II. THEORY

A. Intermolecular potentials

Details of the intermolecular potentials have been dis-
cussed elsewhere1,3,5 and therefore only a very brief outline
is given here. The two-body interactions of argon are well
represented by the Barker-Fisher-Watts �BFW� potential.5

The BFW potential is the same potential that was originally11

used to formulate Eq. �1�. It provides an accurate description
of the two-body only contribution to the phase equilibria and
pVT properties of fluids. It can also be modified15 to account
for two-body forces in both krypton and xenon. Marcelli and
Sadus11 established that Eq. �1� was equally valid for argon,
krypton, and xenon. Therefore, calculations for argon were
mainly conducted as part of this work.

Different types of interaction are possible depending on
the distribution of multipole moments between the
atoms.16–19 The contributions from third-order interactions
involving dipoles and quadrupoles in addition to the fourth-
order triple dipole contribution have been evaluated
previously.3 The results demonstrate3 that there is a high de-
gree of cancellation of the multipole terms, which means that
the third-order triple dipole term alone is a good representa-
tion of three-body dispersion interactions. In view of this, we
have only considered contributions from third-order triple
dipole interactions in this work, which was evaluated from
the formula proposed by Axilrod and Teller �AT�.10 The AT
potential has only one interatomic parameter, namely, the
nonadditive coefficient �, which is also included in Eq. �1�.
The total intermolecular potential is the sum of the Barker-
Fisher-Watts and Axilrod-Teller terms �BFW+AT�. As sum-
marized elsewhere3 values of the nonadditive term and the
parameters for the BFW potentials are available in the
literature.5,20,21

B. Simulation details

NVT molecular dynamics1 simulations were performed
for 108, 256, 500, and 864 atoms at different temperatures
and reduced densities ranging from 0.03 to 1.3. The starting
structure was a face centered cubic lattice. The equations
of motion were integrated by a fourth-order Gear predictor-
corrector scheme1 with a reduced integration time step of
0.001. The first 50 000 time steps of each trajectory were
used to equilibrate the system, and a further 200 000 time
steps were carried out to calculate average values. Adopting
the common practice of molecular simulation, the tempera-
ture �T*=kBT /��, density ��*=��3�, and energy �E*=E /
�N� are reported in reduced units relative to the intermolecu-
lar parameters of the BFW potential. It is also convenient to

define a reduced nonadditive coefficient ��*=� /��9�.
Periodic boundary conditions were applied. The BFW

two-body potential was truncated at half the box length and
long-range corrections were used to recover the full contri-
bution to the intermolecular potential. A cutoff distance of a
quarter of the box length was used for three-body interac-
tions from the AT potential. It is very well known1 that, for
periodic systems involving pairwise interactions, the cutoff
distance for the simulation must not exceed half of the box
length. However, as discussed elsewhere,3 when three-body
interactions are involved the cutoff distance for the three-
body term must not exceed a quarter of the box length. If this
distance is exceeded, the triplets obtained will not be cor-
rectly imaged. A feature of the calculations reported here is
that contributions of two- and three-body interactions to en-
ergy were obtained accurately. The standard errors in the
energies were typically less than 0.1%.

III. RESULTS AND DISCUSSION

A. Fluid phase relationship

For interactions involving two-body interactions, 500 at-
oms are usually sufficient to minimize the influence of sys-
tem size to within the statistical uncertainties of the simula-
tion. However, it has been recently observed22 that system-
size dependences are more significant in three-body
interactions because the size of the system limits the number
of triplets that will be observed for interatomic separations
within the cutoff distance of the AT potential. In particular, a
simulation involving a small number of atoms may not gen-
erate a sufficient number of atomic triplets in comparison to
atomic pairs to accurately reflect the relative contribution of
three-body interactions to two-body interactions.

The system-size dependency of the ratio of three- and
two-body energies at reduced densities of 0.03–1.3 is illus-
trated in Fig. 1�a� at T*=0.9914. From Fig. 1�a�, we observe
that the ratio is sensitive to the size of the system. In particu-
lar, the results for 108 atoms deviate substantially from the
results obtained with 256, 500, and 864 atoms. At moderate
to high densities, the results for 256 atoms also display a
significant departure from the data obtained for both 500 and
864 atoms. In contrast, the results for 500 and 864 atoms are
in reasonable agreement with each other at all densities. A
discontinuity in the data is also apparent from Fig. 1�a�,
which occurs in the vicinity of the solid-liquid phase transi-
tion. Therefore, Eq. �1� does not apply to the solid phase,
which requires the formulation of a separate relationship.

Marcelli and Sadus reported11 that the conclusions
reached for argon also applied equally to both krypton and
xenon. To verify this, we performed identical molecular dy-
namics simulations for krypton and xenon using appropriate
modifications15 of the BFW potential and intermolecular pa-
rameters previously used3 for these atoms. The results for
argon, krypton, and xenon at subcritical temperatures are
compared in Fig. 1�b�. The comparison illustrates that the
ratio of three-body to two-body interaction is almost identi-
cal for the three systems. Therefore, subsequent calculations
were restricted exclusively to argon.
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The simulation data in the normal liquid range of re-
duced densities between 0.4 and 0.8 were fitted to Eq. �1� to
obtain values of �a for the different system sizes. Reduced
densities both below 0.4 and above 0.8 were excluded to
avoid metastable states in the two-phase vapor-liquid region
and two-phase solid-liquid region, respectively. It is evident
from Fig. 2�a� that the linear relationship is a very good
approximation in all cases, particularly for systems of 256 or
more atoms. The values of �a vary from 0.38 �108 atoms� to
0.85 �864 atoms�. The value of �a=0.65 attributed to 200
atoms was obtained from analyzing the Gibbs ensemble data
reported previously.11 It should be noted that although these
calculations were reported for 500 atoms, they were distrib-
uted between two phases. This means that, on average, the
liquid phase contained only 200 atoms. It is apparent from
Fig. 2�b� that the value of �a does not increase linearly with
system size, but instead rapidly reaches a plateau. Therefore,
the value of �a=0.85 is probably a good approximation of
the infinite atom limit. This is in contrast to the value of �a

=2/3 reported previously11 from Gibbs ensemble data. It
should be noted that this relationship is not valid in the low-
density region, where two-phase separation is likely to
occur.

B. Solid phase relationship

Our analysis of the simulation data for the solid phase
indicated that the ratio of three-body to two-body energies
changes not only with density but also with the square of the
density, i.e.,

E3 =
�E2

��6 ��a� − �b�3�2� . �3�

The accuracy of this relationship is illustrated in Fig. 3�a�
and the values of �a and �b are summarized in Table I. Fig-
ure 3�a� indicates that Eq. �3� is reasonably accurate in all
cases. The main deviation from this relationship occurs at a
reduced density of 1.1, which can probably be attributed to
the fact that the system has some metastable character at this
density. The sensitivity of �a and �b to system size is illus-
trated in Fig. 3�b�, which indicates that both values reach a
plateau for 500 atoms. Therefore, �a=5.5 and �b=6 probably
represent a very good approximation of the values for an
infinite system.

C. The effect of temperature on the relationships

Originally,11 Eq. �1� was obtained from Gibbs ensemble
simulation at different temperatures, which indicates that the
relationship should be valid over a reasonably wide range of

FIG. 1. �a� Ratios of three-and two-body potential energies obtained in this
work for ensembles with different numbers of argon atoms �� 108, � 256,
� 500, and � 864� at different densities and T*=0.9914. �b�Comparison of
calculations for 500 atoms of argon ��, T*=0.9914�, krypton ��, T*=1�,
and xenon ��, T*=0.9252� at subcritical temperatures.

FIG. 2. �a�Comparison of the predictions of Eq. �1� at normal liquid densi-
ties, using values of �a summarized in Table I, with simulation data obtained
in this work for different numbers of argon atoms �� 108, � 200, � 256,
� 500, and � 864�. �b�The system-size dependence of the � parameter in
Eq. �1�.
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temperatures, i.e., temperatures between the triple point and
the critical point of the fluid. To investigate the influence
of temperature on the relative contributions of two-body
and three-body interactions, we performed molecular dynam-
ics simulations at subcritical �T*=0.9 and T*=0.9914�,
near critical �T*=1.4168�, and supercritical temperatures
�T*=1.2678 and T*=2�. The results for these temperatures
are compared in Fig. 4. It is apparent that the ratio of two-
and three-body energies is only slightly influenced by tem-
perature in the normal liquid range �0.4��*�0.8�. It should
be noted that the dip observed at low densities for T*=0.9
corresponds to metastable states in the two-phase vapor-

liquid region. In contrast, temperature has a much more sig-
nificant influence in the solid phase, particularly at T*=2.0.

The predictions of Eqs. �1� and �3� are compared with
data at subcritical and slightly supercritical temperatures in
Figs. 5�a� and 5�b�, respectively. It is apparent from these
comparisons that the relationships remain valid for these

FIG. 3. �a�Comparison of the predictions of Eq. �3�, at solidlike densities,
using values of �a and �b summarized in Table I, with simulation data
obtained in this work for different numbers of argon atoms �� 108, � 256,
� 500, and � 864�. �b�The system-size dependence of the � parameters in
Eq. �3�.

TABLE I. Summary of the � parameters of Eqs. �1� and �3� obtained for
systems with different numbers of atoms.

Number of atoms
Eq. �1�

�a

Eq. �3�

�a �b

108 0.38 3.7 3.8
200 0.65
256 0.72 4.3 4.7
500 0.83 5.57 6.0
864 0.85 5.58 6.0

FIG. 4. The ratio of three- and two-body energies as a function of density at
different temperatures. Molecular simulation data obtained in this work
are shown for subcritical �T*=0.9 ���, T*=0.9914 ����, near critical
�T*=1.2678 ����, and supercritical �T*=1.4168 ���, T*=2.0 ����
temperatures.

FIG. 5. Comparison of the predictions of �a� Eq. �1� and �b� Eq. �3� for the
fluid and solid regions, respectively, with simulation data obtained in this
work for 500 argon atoms at different temperatures. Results are shown for
subcritical �T*=0.9 ���, T*=0.9914 ����, near critical �T*=1.2678 ����,
and supercritical �T*=1.4168 ���, T*=2.0 ���� temperatures.
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temperatures. The reason for the relative insensitivity of Eqs.
�1� and �3� to these temperatures is that the relationships
were developed at temperatures at which the kinetic term
makes a small contribution relative to the two-body term.
However, as the temperature is increased, the kinetic contri-
bution begins to dominate the two-body term. Therefore, the
basis of the relationships becomes progressively weaker.

The value of these simple relationships is that they can
be used to calculate all simulation quantities in a homoge-
neous phase with an accuracy similar to that obtained for the
full two-body+three-body potentials. For example, previous
Gibbs ensemble Monte Carlo11 and nonequilibrium molecu-
lar dynamics12 simulations have demonstrated that the rela-
tionship can be used to accurately obtain both the fluid phase
envelope and shear viscosities at different strain rates, re-
spectively. In addition to the energy, the pressure can also be
accurately obtained13 when the virial expression is suitably
modified. The modification13 to the virial expression for
pressure arises because of the density-dependent nature of
the intermolecular potential. Other issues regarding density-
dependent potentials have been described in detail in the
literature.23 Figure 6 illustrates the accuracy of the relation-
ship for the calculation of the vapor pressure curve of argon.
At low temperatures, the pressures obtained are indistin-
guishable from results obtained using the full three-body po-
tential, whereas at higher temperatures, the vapor pressure is
slightly underpredicted. Details of the simulation method are
the same as reported previously.24 As noted above, a limita-
tion of the approach is that it is not valid for inhomogeneous
regions, which must be handled by other approaches.25

IV. CONCLUSIONS

Simple relationships exist between three- and two-body
interactions in both the normal fluid region and solid phases
of noble gases, and possibly other atoms. The relationship
for liquids has a simple density dependence with only one
parameter determined from simulation data. In contrast, the
relationship for the solid depends both on density and on the
square of density and requires two parameters to be evalu-
ated. The values of these parameters are only sensitive to
system size when a small number of atoms are involved. For
a system size of 500 or more atoms, they remain constant.
The relationships are valid for both subcritical and slightly
supercritical temperatures. A practical benefit of the relation-
ships is that they enable the use of two-body intermolecular
potentials for the prediction of the properties of real systems
without the computational expense of three-body calcula-
tions.
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